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Outline

Introduction and motivation

Modelling inhomogeneities

Vorticity in the early universe

Isocurvature perturbations

- in the concordance cosmology

- in multi-field inflationary systems

Observational significance of vorticity & magnetic fields 
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Observations
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Microwave background



Modelling inhomogeneities

Friedmann is an approximation: there exists structure 
(galaxies, stars, etc..), and CMB anisotropies

Consider perturbations about a homogeneous ‘background’ 
solution

e.g. write energy density as

newtonian mechanics...
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⇣
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inhomogeneous
 perturbation



Newtonian cosmology

Newtonian perturbation theory:

energy density:

velocity:               ,    Newtonian potential: 
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⇢(~x, t) = ⇢̄(t)
⇣
1 + �(~x, t)

⌘

~v(~x, t) �(~x, t)

Fluid evolution equations

Poisson equation

�̇ + ~r ·
h
(1 + �)~v

i
= 0

~̇v +H~v + (~v · ~r)~v = �~r��
~rP

⇢̄(1 + �)

r2� = 4⇡G⇢̄a2�
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Fluid evolution equations

Poisson equation

�̇ + ~r ·
h
(1 + �)~v

i
= 0

~̇v +H~v + (~v · ~r)~v = �~r��
~rP

⇢̄(1 + �)

r2� = 4⇡G⇢̄a2�

Linearised fluid equations

Poisson equation

�̇ + ~r · ~v = 0

~̇v +H~v = �~r�� 1

⇢̄
~r�P

r2� = 4⇡G⇢̄a2�



Alternatively, writing                      , obtain

8

�P = c2s�⇢

@2�

@t2
+ 2H

@�

@t
= 4⇡G⇢̄� + c2sr2�



Alternatively, writing                      , obtain

8

�P = c2s�⇢

@2�

@t2
+ 2H

@�

@t
= 4⇡G⇢̄� + c2sr2�

Hubble drag: suppresses 
growth of perturbations



Alternatively, writing                      , obtain

8

�P = c2s�⇢

@2�

@t2
+ 2H

@�

@t
= 4⇡G⇢̄� + c2sr2�

Hubble drag: suppresses 
growth of perturbations
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via gravitational instability



Alternatively, writing                      , obtain

8

�P = c2s�⇢

@2�

@t2
+ 2H

@�

@t
= 4⇡G⇢̄� + c2sr2�

Hubble drag: suppresses 
growth of perturbations

Gravitational term: perturbations grow 
via gravitational instability

Pressure term



Relativistic inhomogeneities

General relativity governs dynamics of the universe

Must use relativity to describe regions of high density, fluids 
moving an appreciable fraction of    , or large scales

Einstein’s field equations:

9

c

Gµ⌫ = 8⇡GTµ⌫



Relativistic inhomogeneities

General relativity governs dynamics of the universe

Must use relativity to describe regions of high density, fluids 
moving an appreciable fraction of    , or large scales

Einstein’s field equations:

9

c

Gµ⌫ = 8⇡GTµ⌫

Einstein tensor, function of the 
metric tensor, describes geometry energy momentum tensor,

describes matter



Relativistic inhomogeneities

General relativity governs dynamics of the universe

Must use relativity to describe regions of high density, fluids 
moving an appreciable fraction of    , or large scales

Einstein’s field equations:

9

c

Gµ⌫ = 8⇡GTµ⌫

Einstein tensor, function of the 
metric tensor, describes geometry energy momentum tensor,

describes matter

ds

2 = gµ⌫dx
µ
dx

⌫



Cosmological perturbations
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How to proceed?

- Fully inhomogeneous solution (extremely difficult in 
principle; impossible in practice?)

- Similar to Newtonian case: expand around a homogeneous 
solution - Cosmological Perturbation Theory

Inhomogeneous perturbations to

matter, e.g., energy density 

geometry: metric tensor

⇢(~x, t) = ⇢̄(t)
⇣
1 + �(~x, t)

⌘

gµ⌫(~x, t) = g

(0)
µ⌫ (t) + �gµ⌫(~x, t)
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gµ⌫(~x, t) = g

(0)
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gµ⌫(~x, t) = g

(0)
µ⌫ (t) + �gµ⌫(~x, t)

FLRW metric:

- homogeneous & isotropic

- take flat spatial space in agreement with observations

[g(0)µ⌫ ] =


�1 0
0 a2(t)�ij

�
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Perturbed FLRW metric:

two independent scalars, e.g.

or

[�gµ⌫ ] =


�2�(~x, t) a(t)B,i(~x, t)

a(t)B,i(~x, t) 0

�

[�gµ⌫ ] =


�2�(~x, t) 0

0 a

2(t)2 (~x, t)�ij

�

gµ⌫(~x, t) = g

(0)
µ⌫ (t) + �gµ⌫(~x, t)



Governing equations
Fluid equations

Poisson equation

13

�0 + (1 + w)(r2v � 3 0) = 3H(w � c2s )�

v0 +H(1� 3w)v +
w0

1 + w
v +

�P

⇢̄(1 + w)
+ � = 0

r2� = �4⇡Ga2⇢̄
h
� � 3H(1 + w)r2v

i



When Newtonian theory is not 
enough...

But Newtonian theory cannot model

- perturbations in relativistic species (radiation, neutrinos,...)

- regions of high pressure (eg early universe)

- regions of a comparable size of the horizon

For the early universe (inflation/CMB) use relativistic pert thy

Effects of general relativity on initial conditions for N-Body 
sims

14

(in progress)



Vorticity
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Figure 1: 3D rendering of regions of strong vorticity in a 20483 hydrodynamic simulation. From

left to right and top to bottom, succesive zooms into the structures are shown. Note the small scale

vortex filaments, and the development of clusters of vortex tubes at intemediate scales. Velocity

field lines are shown in red as a reference in the last zoom (right).

scale shear [1], the presence of long-time correlations in the small scales (compared with the eddy

turnover time), slower than expected recovery of isotropy, and intermittency (which in turn implies

corrections to the energy spectrum).

Recently [2], we performed a hydrodynamic simulation on a grid of 20483 regularly spaced points,

with a Taylor Reynolds number of Rλ ∼ 1300 (Fig. ). At this Reynolds number the anisotropic large

scale flow pattern, the inertial range, the bottleneck, and the dissipative range are clearly visible,

thus providing a good test case for the study of turbulence as it appears in nature. A comparison

with runs at lower Reynolds numbers was performed, and showed the emergence of scaling laws for

the relative amplitude of local and non-local interactions in spectral space.

The data allowed for a refined analysis of the behavior and structure of turbulent flows as the

Reynolds number is increased. We have in particular showed that: (i) the bottleneck (the pile up

of energy close to the dissipation scale) is linked to the depletion of nonlinearities as we approach

this scale; and (ii) convergence to the asymptotic turbulence regime appears to be very slow: even

though the nonlocal interactions do diminish with Reynolds number, they are still measurable at

2



Classical fluids
Classical fluid dynamics

Euler equation

Evolution:

- ‘source’ term zero if         and        are parallel

- i.e. barotropic fluid, no source term

The inclusion of entropy provides a source for vorticity
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Crocco (1937)

~! ⌘ ~r⇥ ~v

@~v

@t
+ (~v · ~r)~v = �1

⇢
~rP

@~!

@t
= ~r⇥ (~v ⇥ ~!) +

1

⇢2
~r⇢⇥ ~rP

~rP ~r⇢



Entropy perturbations
Adiabatic system

Non-adiabatic system allows for entropy perturbations

Single fluid: require equation of state 

Multiple fluids: 

- Intrinsic part of each fluid, 

- Relative part between fluids, 
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�P

Ṗ
=

�⇢

⇢̇

�P

Ṗ
6= �⇢

⇢̇
�P =

Ṗ

⇢̇
�⇢+ �Pnad

P ⌘ P (⇢, S)

�P↵intr ⌘ �P↵ � c2↵�⇢↵

�Prel =
1

2⇢̇

X

↵,�

(c2↵ � c2�)(⇢̇��⇢↵ � ⇢̇↵�⇢�)



Vorticity evolution
Vorticity tensor, 

First order vorticity evolves as

Reproduces well known result that, in radiation domination,

i.e. in absence of anisotropic stress, no source term:                is 
a solution to the evolution equation            

18

!0
1ij � 3Hc2s!1ij = 0 Kodama & Sasaki (1984)

|!1ij!1
ij | / a�2

!1ij = 0

!µ⌫ = Pµ
↵P⌫

�u[↵;�]



Beyond linear peturbations

So far, have considered linear perturbations

Extend, by expanding as, e.g., 

Crucial difference: scalar, vector and tensor perturbations no 
longer decouple

19

⇢(~x, ⌘) = ⇢0(⌘) + �⇢1(~x, ⌘) +
1

2
�⇢2(~x, ⌘)



Vorticity evolution: second order

Second order vorticity,         , evolves as 

assuming zero first order vorticity.

For vanishing non-adiabatic pressure, vorticity decays as at 
first order

Including entropy gives a non-zero source term

This generalises Crocco’s theorem to an expanding framework
20

!2ij

!0
2ij � 3Hc2s!2ij =

2a

⇢0 + P0

(
3HV1[i�Pnad1,j] +

�⇢1,[j�Pnad1,i]

⇢0 + P0

)

Lu et. al. (2009)

AJC, Malik & Matravers (2009)



Isocurvature/entropy...

Single (barotropic) fluid systems have zero non-adiabatic 
pressure

- single scalar field, in superhorizon limit can be treated as a 
barotopic fluid

Non-adiabatic pressure and entropy perturbations are gauge 
invariant, cannot be ‘gauged away’

Study:

- relative entropy between fluids in the usual cosmic fluid (i.e. 
baryons, cold dark matter, radiation, neutrinos ...)

- isocurvature perturbations in multi-field inflation model
21



... in concordance cosmology

baryons, CDM have 

photons, neutrinos are relativistic:

adiabatic initial conditions

 solve using a modified version of CMBFast

aim: extract isocurvature already present in CMB calculations, 
to use as initial condition for vorticity

22

wb = wc = c2b = c2c = 0

w� = w⌫ = c2� = c2⌫ = 1
3

�� = �⌫ =
4

3
�b =

4

3
�c = �2

3
Ck2⌘2i



23

Power spectra of baryon density contrast                (left) and the 
non-adiabatic pressure perturbation                      (right)

Pb(k, ⌘)

P�Prel(k, ⌘)
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                   as a function of redshift for set wavenumber (left); and 
as a function of wavenumber for set redshift (right).
P�Prel(k, ⌘)

Brown, AJC & Malik (2012)



... in multi-field inflation
Consider two field inflation models with Lagrangian density

Introduce comoving entropy perturbation

To compare with comoving curvature perturbation

Then investigate dynamics of different models...

L =
1

2

⇣
'̇2 + �̇2

⌘
+ V (',�)

R =
H

'̇2 + �̇2

⇣
'̇�'+ �̇��

⌘

S =
H

Ṗ
�Pnad



Double quadratic inflation
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0102030405060
Nend �N

10�17

10�15

10�13

10�11

10�9

10�7

k3PR/(2⇡2)

k3PS/(2⇡2)

k3P eS/(2⇡2)

V (',�) =
1

2
m2

''
2 +

1

2
m2

��
2

http://pyflation.ianhuston.net/ Huston & AJC (2012)

http://pyflation.ianhuston.net
http://pyflation.ianhuston.net


Double quartic inflation
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V (',�) = ⇤4

" 
1� �2

0

v2

!2

+
'2

µ2
+

2'2�2

'2
cv

2

#

01020304050
Nend �N

10�22

10�18

10�14

10�10

10�6

k3PR/(2⇡2)

k3PS/(2⇡2)

k3P eS/(2⇡2)

Avgoustidis et. al. (2011)

nR = 0.932



28

012345
Nend �N

10�22

10�18

10�14

10�10
k3PR/(2⇡2)

k3PS/(2⇡2)

k3P eS/(2⇡2)



Isocurvature: Summary
Isocurvature is naturally sourced in concordance cosmology by 
relative entropy between species

Two-field inflationary models can produce isocurvature at the 
end of inflation

Future work:

- Modelling reheating perturbatively with decay channels 
from fields to matter/radiation, how likely is isocurvature to 
survive?

- Can these realistic isocurvature perturbations generated a 
sizeable vorticity?

29

Huston & AJC (in progress)



Observational Importance 
of  Vorticity 

30



Observational signatures

For linear perturbations, B mode polarisation of the CMB only 
produced by tensor perturbations:

- scalar perturbations only produce E mode polarisation

- vectors produce B modes, but decay with expansion

Second order, vector perturbations produced by first order 
density and entropy perturbations source B mode polarisation

Important for current and future CMB polarisation expts

31
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Magnetic Fields
Electric and magnetic fields wrt observer 

Governing equations are then Maxwell equations

=> set of covariant Maxwell equations

How to include in metric perturbation theory?

- linear perturbations, include ‘half-order, since

- unclear how to extend to higher order perturbation theory
33

uµ

Eµ = Fµ⌫u⌫ Bµ =
1

2
✏µ⌫��u⌫Fµ�

F[µ⌫;�] = 0 Fµ⌫
;⌫ = jµ

B2 ⇠ ⇢



So, expand E/B fields using same expansion parameter

Maxwell equations at each order: e.g. 1st order

34

Bµ = Bµ
1 +

1

2
Bµ

2 +
1

6
Bµ

3Eµ = Eµ
1 +

1

2
Eµ

2 +
1

6
Eµ

3

@iB1
i = 0

@iE1
i = �(jµuµ)1

✏0ijka2@jE1k = �B1
i0 +HB1

i
⇣
1� 2

3
a
⌘

✏0ijka2@jB1k = E1
i0 �HE1

i
⇣
1� 2

3
a
⌘
+ aJ1

i
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Maxwell equations at each order: e.g. 1st order

34

Bµ = Bµ
1 +

1

2
Bµ

2 +
1

6
Bµ

3Eµ = Eµ
1 +

1

2
Eµ

2 +
1

6
Eµ

3

@iB1
i = 0

@iE1
i = �(jµuµ)1

no source for linear 
magnetic field

✏0ijka2@jE1k = �B1
i0 +HB1

i
⇣
1� 2

3
a
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i0 �HE1

i
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1� 2
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⌘
+ aJ1
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So, expand E/B fields using same expansion parameter

Maxwell equations at each order: e.g. 1st order

34

Bµ = Bµ
1 +

1

2
Bµ

2 +
1

6
Bµ

3Eµ = Eµ
1 +

1

2
Eµ

2 +
1

6
Eµ

3

@iB1
i = 0

@iE1
i = �(jµuµ)1

no source for linear 
magnetic field

similarly at second order...

✏0ijka2@jE1k = �B1
i0 +HB1

i
⇣
1� 2

3
a
⌘

✏0ijka2@jB1k = E1
i0 �HE1

i
⇣
1� 2

3
a
⌘
+ aJ1

i



Work to third order, interesting equation is:

35

@iB3
i = �6E1i!2

i

second order vorticity sourcing magnetic field!!
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Work to third order, interesting equation is:

35

@iB3
i = �6E1i!2

i

second order vorticity sourcing magnetic field!!

Next - in progress (Ellie Nalson et al) - calculate size of this 
magnetic field generated; large enough to be seed field?

Interesting formalism question: how does this compare to 
two-parameter perturbation theory?



Summary

Vorticity generated at second order in perturbation theory 
from entropy perturbations

Entropy perturbations can arise naturally in systems containing 
more than one fluid/field

- cosmic fluid containing relativistic/non-relativistic matter

- multi-field inflationary models

This can source magnetic fields (albeit at third order)

36



Future directions

Aim to calculate vorticity spectrum from realistic isocurvature 
inputs, such as:

- inflation

- cosmic fluid

Investigate potential of second order vorticity to source 
primordial magnetic seed fields

Study effects of second order vorticity on B-mode polarisation

37

Alabidi, AJC, Huston & White (in progress)

Brown, AJC & Malik (in progress)

Nalson, AJC, Malik (in progress)


